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Abstract

Oxidative metabolites of estrogens have been implicated
in the development of breast cancer, yet relatively little is
known about the metabolism of estrogens in the normal
breast. We developed a mathematical model of mammary
estrogen metabolism based on the conversion of 17B-
estradiol (E2) by the enzymes cytochrome P450 (CYP) 1A1
and CYP1B1, catechol-O-methyltransferase (COMT), and
glutathione S-transferase P1 into eight metabolites [i.e.,
two catechol estrogens, 2-hydroxyestradiol (2-OHE2) and
4-hydroxyestradiol (4-OHE2); three methoxyestrogens, 2-
methoxyestradiol, 2-hydroxy-3-methoxyestradiol, and 4-
methoxyestradiol; and three glutathione (SG)-estrogen
conjugates, 2-OHE2-1-SG, 2-OHE2-4-SG, and 4-OHE2-2-
SG]. When used with experimentally determined rate
constants with purified enzymes, the model provides for
a kinetic analysis of the entire metabolic pathway. The
predicted concentration of each metabolite during a 30-
minute reaction agreed well with the experimentally

derived results. The model also enables simulation for
the transient quinones, E2-2,3-quinone (E2-2,3-Q) and E2-
3,4-quinone (E2-3,4-Q), which are not amenable to direct
quantitation. Using experimentally derived rate constants
for genetic variants of CYP1A1, CYP1B1, and COMT, we
used the model to simulate the kinetic effect of enzyme
polymorphisms on the pathway and identified those
haplotypes generating the largest amounts of catechols
and quinones. Application of the model to a breast cancer
case-control population identified a subset of women with
an increased risk of breast cancer based on their enzyme
haplotypes and consequent E2-3,4-Q production. This
in silico model integrates both kinetic and genomic data
to yield a comprehensive view of estrogen metabolomics
in the breast. The model offers the opportunity to combine
metabolic, genetic, and lifetime exposure data in assessing
estrogens as a breast cancer risk factor. (Cancer Epide-
miol Biomarkers Prev 2006;15(9):1620–9)

Introduction

Numerous epidemiologic studies have implicated estrogens
in the development of breast cancer (1, 2). The two major
estrogens, 17h-estradiol (E2) and estrone (E1), are ligands for
the estrogen receptor and substrates for oxidizing phase I
enzymes, cytochrome P450 (CYP) 1A1 and CYP1B1. In their
dual role of ligand and substrate, estrogens may simulta-
neously stimulate cell proliferation and gene expression via
the estrogen receptor and cause DNA damage via their
oxidation products, the catechol estrogens (3, 4). The latter
mechanism is based on the unique chemical structure of
estrogens. Unlike all other steroid hormones, estrogens have
an aromatic A-ring, which yields catechols on oxidation that
may be further oxidized to highly reactive semiquinones and
quinones (Fig. 1), which in turn can form both oxidative
and estrogen DNA adducts. Thus, estrogen quinones seem
to share a common feature of many chemical carcinogens
(i.e., the ability to covalently modify DNA; refs. 5-8). Support
for the carcinogenic activity of estrogens and their oxidative
products, the catechol estrogens, comes from experiments
in animal models. Treatment with E2 and the catechol
4-hydroxyestrogen and 2-hydroxyestrogen caused kidney
cancer in male Syrian hamsters and endometrial cancer in
female CD1 mice (9-11). However, there is no animal model
for estrogen-induced breast cancer, and even in the hamster
and mouse models, the precise mechanism of DNA damage

is uncertain. Thus, there is a need to understand estrogen
metabolism in the human breast to elucidate the role of
endogenous and exogenous estrogens in mammary carcino-
genesis. To advance this understanding requires not only
characterization of the various estrogen metabolites but also
equally important a precise definition of the responsible
enzymes.

Several investigators have proposed a qualitative model
of mammary estrogen metabolism regulated by oxidizing
phase I and conjugating phase II enzymes (12, 13). The
oxidative estrogen metabolism pathway starts with E2 and
E1, which are oxidized to the 2-OH and 4-OH catechol
estrogens by the phase I enzymes CYP1A1 and CYP1B1
(14, 15). These same enzymes are postulated to further
oxidize the catechol estrogens to unstable semiquinones and
quinones. Estrogen quinones then form Michael addition
products with deoxynucleosides (5, 6, 16). The catechol
estrogens and their estrogen quinones/semiquinones also
undergo redox cycling, which results in the production of
reactive oxygen species capable of causing oxidative DNA
damage (17-19). Thus, P450-mediated estrogen metabolism
is expected to lead to the formation of both oxidative and
estrogen DNA adducts, all of which have been shown to
possess mutagenic potential (20-22). It is postulated that the
genotoxicity of the oxidative estrogen metabolism pathway
is mitigated by alternate reactions of the metabolites with
phase II enzymes. Specifically, catechol-O-methyltransferase
(COMT) catalyzes the methylation of catechol estrogens to
methoxy estrogens, which lowers the catechol estrogens
available for conversion to estrogen quinones (23, 24). In
turn, the estrogen quinones undergo conjugation with
reduced glutathione (GSH) via the catalytic action of
glutathione S-transferase (GST) P1 (25, 26). The formation
of GSH-estrogen conjugates would reduce the level of
estrogen quinones and thereby lower the potential for
DNA damage.
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The current model of mammary estrogen metabolism has
several limitations. First, only single enzymes (e.g., CYP1B1
and COMT) have been analyzed to date with simple
substrate-product kinetics, which clearly generates an incom-
plete picture of the metabolic pathway. Second, although the
model incorporates the functional roles of the phase I and II
enzymes, it remains uncertain how the enzymes interact
quantitatively. Third, each of the phase I and II enzymes
contains genetic polymorphisms (15, 23, 27, 28). Studies from
several laboratories, including our own, have examined the
functional implications of the polymorphisms on estrogen
metabolism, again focusing on single enzymes (15, 23, 24, 29,
30). Thus, the multitude of potential kinetic reactions
resulting from the complex genetic variations of the phase
I and II enzymes is completely outside the scope of the
current model of estrogen metabolism. We developed
recently an experimental in vitro model of mammary
estrogen metabolism, in which we used purified, recombi-
nant phase I enzymes CYP1A1 and CYP1B1 with the phase II
enzymes COMT and GSTP1 to determine how E2 is
metabolized (31). We used both gas and liquid chromatog-
raphy with mass spectrometry (GC/MS and LC/MS) to
measure the parent hormone E2 as well as eight metabolites
(i.e., the catechol estrogens, methoxyestrogens, and estrogen-
GSH conjugates; Fig. 1). In this article, we used these
experimental data to develop a multicompartmental kinetic
model of the metabolic pathway. Furthermore, we used
previously determined rate constants of variant CYP1A1,
CYP1B1, and COMT to present an in silico kinetic-genomic

model of mammary estrogen metabolism. Finally, we applied
the model to a breast cancer case-control population and
determined that the combination of enzyme haplotypes with
E2-3,4-Q production did indeed identify a subset of women
with increased breast cancer risk.

Materials and Methods

Mathematical Model.We developed a mathematical model
for the estrogen metabolism pathway shown in Fig. 1. We
assume that each reaction in the pathway (A ! B , a generic
step in the pathway) is an enzyme-catalyzed reaction of the

form: Aþ E�!
k1

p�k2
C�!k3 Bþ E, where E denotes the enzyme,

C is the enzyme-substrate complex, and ki, i = 1, 2, and 3, are
the rate constants of the reaction. For these types of reaction,
we approximate the kinetics using the quasi steady-state

assumption: C ¼ E�A
KmþA ;Km ¼ k2þk3

k1
, where E * is the initial

enzyme concentration. With this assumption, we have dB
dt �

kcatE
�A

KmþA , where kcat is a constant. This approach leads to a system
of nonlinear, ordinary differential equations for the concen-
trations of the compounds in the pathway. In each equation,
kcatj and Kmj are constants and Eenzyme are the enzyme levels in
the respective reactions.

d E2ð Þ
dt

¼ � kcat1 ECYP1B1E2
Km1 þ E2

� kcat2ECYP1A1E2
Km2 þ E2

� kcat3ECYP1B1E2
Km3 þ E2

ð1Þ

Figure 1. The estrogen metabolism
pathway is regulated by oxidizing
phase I and conjugating phase II
enzymes. CYP1A1 and CYP1B1
catalyze the oxidation of E2 to
catechol estrogens 2-OHE2 and 4-
OHE2. The catechol estrogens are
either methylated by COMT to
methoxyestrogens (2-MeOE2, 2-
OH-3-MeOE2, and 4-MeOE2) or
further oxidized by CYPs to semi-
quinones (E2-2,3-SQ and E2-3,4-
SQ) and quinones (E2-2,3-Q and
E2-3,4-Q). The estrogen quinones
are conjugated by GSTP1 to GSH-
conjugates (2-OHE2-1-SG, 2-
OHE2-4-SG, and 4-OHE2-2-SG).
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d OHE22
� �

dt
¼ kcat2ECYP1A1E2

Km2 þ E2
þ Kcat3ECYP1B1E2

Km3 þ E2
� kcat6ECOMTOHE

2
2

Km6
þOHE22

þ

kcat7ECYP1A1MeOHE
2
2

Km7 þMeOHE22
þ kcat8ECYP1B1MeOHE

2
2

Km8 þMeOHE22
�

kcat9ECOMTOHE
2
2

Km9 þOHE22
þ kcat10ECYP1A1MeOHE

23
2

Km10 þMeOHE232
þ

kcat11ECYP1B1MeOHE
23
2

Km11 þMeOHE232
� VmaxQ1 OHE

2
2

� �rQ1

KmQ1
þ OHE22
� �rQ1 ð2Þ

d OHE42
� �

dt
¼ kcat1ECYP1B1E2

Km1 þ E2
� kcat4ECOMTOHE

4
2

Km4
þOHE42

þ

kcat5ECOMTMeOHE
4
2

Km5 þMeOHE42
� VmaxQ2 OHE

4
2

� �rQ2

KmQ2
þ OHE42
� �rQ2 ð3Þ

d MeOHE42
� �

dt
¼ kcat4ECOMTOHE

4
2

Km4 þOHE42
� kcat5ECYP1B1MeOHE

4
2

Km5 þMeOHE42
ð4Þ

d MeOHE22
� �

dt
¼ kcat6ECOMTOHE

2
2

Km6 þOHE22
� kcat7ECYP1A1MeOHE

2
2

Km7 þMeOHE22
�

kcat8ECYP1B1MeOHE
2
2

Km8
þMeOHE22

ð5Þ

dðMeOHE232 Þ
dt

¼ kcat9ECOMTOHE
2
2

Km9 þOHE22
� kcat10ECYP1A1MeOHE

23
2

Km10 þMeOHE232
�

kcat11ECYP1B1MeOHE
23
2

Km11 þMeOHE232
ð6Þ

d EQ23
2

� �

dt
¼ VmaxQ1 OHE

2
2

� �rQ1

KmQ1 þ OHE22
� �rQ1 �

kcat13EGSTP1EQ
23
2

Km13
þ EQ23

2

�

kcat14EGSTP1EQ
23
2

Km14
þ EQ23

2

� k1EQ23
2 ð7Þ

d EQ34
2

� �

dt
¼ VmaxQ2 OHE

4
2

� �rQ2

KmQ2
þ OHE42
� �rQ2 �

kcat12EGSTP1EQ
34
2

Km12 þ EQ34
2

� k2EQ34
2 ð8Þ

d OHE212 SG
� �

dt
¼ kcat14EGSTP1EQ

23
2

Km14 þ EQ23
2

ð9Þ

d OHE242 SG
� �

dt
¼ kcat13EGSTP1EQ

23
2

Km13 þ EQ23
2

ð10Þ

d OHE422 SG
� �

dt
¼ kcat12EGSTP1EQ

34
2

Km12 þ EQ34
2

ð11Þ

There are parts of the pathway for which kinetic data are not
available. In particular, rate constants cannot be determined
experimentally for the reaction sequences 2-hydroxyestradiol
(2-OHE2)!E2-2,3-SQ!2-OHE2-quinone(E2-2,3-Q)and4-OHE2

OHE2 ! E2-3,4-SQ ! E2-3,4-Q because of the transient nature
of the semiquinones (ms half-life; ref. 32). Therefore, we
simplified the pathway and collapsed the sequential reactions
to single reactions, 2-OHE2 ! E2-2,3-Q and 4-OHE2 ! E2-3,4-
Q, respectively. We also assumed that each of these quinone

production reactions (OHE2
k ! EQ2

ij) satisfies dynamics of

the form
dEQ

ij

2

dt ¼ VmaxQ
OHEk

2ð ÞrQ
KmQ

þ OHEk
2ð ÞrQ , where VmaxQ ;KmQ

, and rQ are

constants. For the mathematical model to be a tractable
computational model of the metabolism pathway, it is
necessary to have estimates of these unknown constants. We
used two types of experimental data to derive the constants
VmaxQ1

;VmaxQ2
;KmQ1

;KmQ2
; rQ1 , and rQ2 . First, we used rate

constants determined experimentally for individual reactions
catalyzed by CYP1A1, CYP1B1, COMT, and GSTP1 (15, 23, 26,
33). Second, we used the concentrations over time determined
for every non-quinone compound in the pathway following
simultaneous incubation of the parent hormone E2 with all
four enzymes (31). Using the experimental data, a searching
algorithm was written inMathematica (Wolfram Research, Inc.,
Champaign, IL) to find values for VmaxQ ;KmQ

, and rQ . The
derived variables, VmaxQ1

;VmaxQ2
;KmQ1

;KmQ2
; rQ1 , and rQ2 , for

the two quinone reactions were chosen to fit the experimental
data using numerical solutions of the system of differential
equation.

As a measure of the quinone concentrations over the
course of time, we introduce the area under the curve
(AUC) metric: AUCk ¼ R T

0 EQk
2ðtÞdt, where k = 23 and 34 and

T = 30 minutes. It is possible to introduce other measures [e.g.,
EQ

ij
2max

¼ max
0	t	T

EQ
ij
2 tð Þ ], which is the highest concentration

achieved during the time interval (0, T). We have chosen the
former metric because it incorporates both concentration and
time.

CYP1A1 Variants. Wild-type (WT) CYP1A1 cDNA was
prepared for expression and purification of recombinant
CYP1A1 as described previously (15, 33). Site-directed muta-
genesis was done to generate the cDNA variants, which were
verified by nucleotide sequence analysis and then similarly
expressed and purified: 462Ile ! Val (m2), 461Thr ! Asn
(m4), and 461Asn-462Val (m2/m4) (27). SDS-PAGE showed
>95% protein purity and the reduced-CO difference spectrum
revealed the kmax at 450 nm, which allowed quantitation for
subsequent enzyme experiments. We used GC/MS (15, 33) to
determine the reaction kinetics of E2 oxidation for WT, m2, m4,
and m2/m4 CYP1A1.

Study Population. The hospital-based case-control study
group of 221 Caucasian women with primary invasive breast
cancer and their age-matched control subjects has been
described previously (34-36). Genomic DNA was extracted
from tumor tissue or WBCs. The DNA samples of four control
subjects had been depleted, leaving 221 cases and 217 controls
for the study group.

DNA Analysis. The genotypes of CYP1A1, CYP1B1, and
COMT were determined by PCR and restriction endonuclease
digestion as described previously (23, 35, 36). Each PCR
contained internal controls for the respective gene and random
retesting of 50 samples yielded 100% reproducibility. Direct
sequencing of five different samples provided further inde-
pendent genotype validation.

Statistical Analysis. The Wilcoxon rank sum test was used
to determine the median difference in age between cases and
controls. The m2 test was used to compare the distribution of
CYP1A1, CYP1B1, and COMT alleles in cases and controls. The
m2 goodness-of-fit test was used for testing Hardy-Weinberg
equilibrium (HWE). Haplotype frequencies were estimated via
the expectation-maximization algorithm in Powermarker
version 3.23 (37, 38). Haplotype-trait association with breast
cancer was tested using a regression approach also in Power-
marker version 3.23 (37, 39).

Composite E2-3,4-Q AUC. There are 4 CYP1A1, 16 CYP1B1,
and 2 COMT (23, 35, 36) haplotypes with 4 
 16 
 2 = 128
possible genetic combinations. We calculated an E2-3,4-Q AUC
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for each woman based on her CYP1A1, CYP1B1, and COMT
haplotypes, which together we term a composite haplotype. In
calculating each AUC, we considered that the CYP1B1 gene
has four polymorphic sites with 16 possible haplotypes.
Because any individual can possess only two haplotypes, the
certainty of assigning the correct CYP1B1 haplotypes becomes
a matter of probability if the individual is heterozygous for
more than one polymorphic site. The probability of a particular
composite haplotype occurring in our population of 438
women was computed in the following manner. For each
individual, a subset of the 128 possible combinations was
computed resulting in 438 subsets of haplotype combinations
(CYP1A1, CYP1B1, and COMT). Then, a count was done for
each of the 128 possible composite haplotypes in the 438
subsets from which a frequency chart was constructed. From
this chart, we defined the probabilities of composite haplo-
types occurring in the population. Suppose an individual has n
possible composite haplotypes of CYP1A1, CYP1B, and COMT
and let AUC1, AUC2,. . .AUCn denote the AUC values for each
haplotype. If the probabilities that these composite haplotypes
occur in the population are P1, P2,. . .Pn , where 0 < Pi < 1, i = 1,
2. . .n, then the composite AUCcomp is defined as

AUCcomp ¼
f
n

i¼1
PiAUCi

f
n

i¼1
Pi

:

Results

Validation of In silico Model against Experimental Data.
In a previous study, we determined the metabolism of E2,
2-OHE2, 4-OHE2, 2-methoxyestradiol (2-MeOE2), 2-hydroxy-3-
methoxyestradiol (2-OH-3-MeOE2), 4-methoxyestradiol
(4-MeOE2), 2-OHE2-1-SG, 2-OHE2-4-SG, and 4-OHE2-2-SG as
a function of time in the presence of CYP1A1 (85 pmol),
CYP1B1 (165 pmol), COMT (125 pmol), and GSTP1 (500 pmol).
Each experimental reaction contained 10 Amol/L E2,
100 Amol/L S-adenosyl methionine, 100 Amol/L glutathione
and proceeded for 0, 2, 5, 10, 20, and 30 minutes at 37jC
followed by GC/MS and LC/MS analysis (31). Figure 2A
shows superimposed the experimental data (dots) and the
model simulations (curves) for all nine analytes over the
30-minute reaction time. In the simulations, it was assumed
that initially all analyte concentrations are zero, except E2 (0) =
E2
*. Enzyme concentrations used in the simulations are

consistent with those used in the preceding experimental
studies (15, 23, 26, 31, 33). Given the complexity of the
pathway, there is excellent agreement between the simulated
and experimental results. Of the nine analytes, only two, 2-
MeOE2 and 2-OH-3-MeOE2, showed a noticeable difference
between simulated and measured results. As shown in Fig. 1,
the likely reason for this discrepancy lies in the more complex
kinetics of 2-MeOE2 and 2-OH-3-MeOE2. These methoxyes-
trogens are the only analytes that are subject to the
simultaneous action of three enzymes (i.e., the COMT-
mediated production, which is counteracted by CYP1A1-
and CYP1B1-mediated demethylation; ref. 33).

Estrogen Quinones. The estrogen quinones are too labile to
be reliably quantified in a multienzyme system. However, as
outlined in Materials and Methods, we could use the
mathematical model to provide functional relations bet-
ween E2(t) and the estrogen quinone concentrations: EQ2

23(t)
and EQ2

34(t). Figure 2B shows the simulated production and
disappearance of the estrogen quinones during the 30-minute
reaction with a lower level and faster, nearly complete
disappearance of E2-2,3-Q compared with the higher, more
sustained level of E2-3,4-Q.

Enzyme Polymorphisms. Because the model was built on
experimentally determined rate constants, we could analyze
how variations in these kinetic variables, occurring as the
result of enzyme polymorphisms, affect single steps or a
combination of steps in the pathway. Table 1 summarizes the
kinetic variables determined for variants of CYP1A1 (this
study), CYP1B1 (40), and COMT (23). We applied the model to
simulate reactions using the rate constants for 4 CYP1A1, 16
CYP1B1, and 2 COMT WT and variant enzymes. For each of
the 4 
 16 
 2 = 128 possible genetic combinations, we
simulated values for the resulting estrogen metabolites over
the 30-minute reaction time and then used interpolatory
polynomials for these functions to calculate the respective
AUCs. These simulations permitted us to see that the
combinations of enzyme variants produced a continuous
spectrum of concentrations over time for each of the estrogen
metabolites. Accordingly, the model allowed us to identify
which variant combinations of CYP1A1, CYP1B1, and COMT
produced the highest or lowest estrogen metabolite concen-
trations over time. Because the catechols and quinones have
been shown to cause DNA damage, we focused our attention
on these two groups of metabolites (Fig. 3). Of the 128
combinations of CYP1A1, CYP1B1, and COMT variants, we
found, for example, that the haplotype combination
CYP1A1461Asn-462IleCYP1B148Arg-119Ser-432Val-453AsnCOMT108Met

produced the maximum AUC for both 4-OHE2 and E2-3,4-Q
(Fig. 3B and D).

Clinical Application of Kinetic-Genomic Model. We
applied the model to a hospital-based breast cancer case-
control population that has been analyzed previously (34-36).
The two principal differences to the preceding studies are (a)
the evaluation of haplotypes rather than genotypes and (b) the
integrated examination of CYP1A1, CYP1B1, and COMT
instead of as independent entities. Table 2 summarizes the
allele and haplotype data of the case-control population. Only
3 of the 4 possible CYP1A1 haplotypes and 12 of 16 possible
CYP1B1 haplotypes were observed in the study group. Among
the 12 CYP1B1 haplotypes, 8 were present in both cases and
controls. Three of the uncommon haplotypes were seen only in
cases and one rare haplotype was found only in controls. The
overall P for the CYP1B1 haplotype distribution among cases
and controls was 0.63. In the simulations, we focused our
analysis on the E2-3,4-Q AUC because E2-3,4-Q has been
identified as the principal estrogen metabolite causing DNA
damage (8-10, 41). We calculated a composite E2-3,4-Q
AUC for each woman based on her CYP1A1, CYP1B1, and
COMT haplotypes as outlined in Materials and Methods. This
information was then used to rank every woman in the
entire study population based on her individual E2-3,4-Q AUC
(Fig. 4).

A major weakness of genetic studies is the neglect of
phenotypic factors. This is particularly true for polymorphic
enzymes whose activity levels can vary considerably more in
response to inducing agents than as a result of a single
inherited amino acid substitution. For this reason, we
considered the effect of changing the concentration of the
phase I enzymes, which play the principal role in the metabolic
pathway. As shown in Fig. 4, we varied the CYP1B1/CYP1A1
ratio from 2 to 5 in the model to reflect reported 4-OHE2/2-
OHE2 ratios in breast tissue (42-44). In these simulations, we
changed the concentrations of CYP1B1 while keeping CYP1A1
constant. The concentrations of COMT and GSTP1 remained
unchanged. When we ranked the E2-3,4-Q AUCs for the entire
study population at different CYP1B1/CYP1A1 ratios, we
observed an increase in median AUCs for cases and controls
with increasing CYP ratio (Fig. 4A). There were no significant
differences between case and control E2-3,4-Q AUCs at any
CYP1B1/CYP1A1 ratio. However, cases predominated in
the top tier of the population as shown for the top 8 percentile
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(35 subjects) of the study group (Fig. 4B). At CYP1B1/CYP1A1
= 5, the model identified 23 cases and 12 controls (P = 0.06).
The discriminating ability was even more pronounced in the
top 2 percentile (10 subjects) of the study population (Fig. 4C).
At CYP1B1/CYP1A1 = 5, there were nine cases and 1 control
(P = 0.01). Table 3 summarizes the composite CYP1A1,
CYP1B1, and COMT haplotypes together with the E2-3,4-Q
AUCs for the top 10 women.

Discussion

The complexity of mammary estrogen metabolism was
recognized several years ago and outlined in a qualitative
model (12, 13). Although this model defined the role of specific
components (e.g., the oxidizing phase I and conjugating phase
II enzymes), the quantitative effect of these enzymes in the
overall pathway could not be assessed. The experimental
analysis of single enzymes with simple substrate-product
kinetics offered an incomplete picture of the pathway limited
to the enzyme examined. Here, we present a novel approach
that incorporates experimental data obtained previously with
individual enzymes into a mathematical model of the estrogen
metabolism pathway. Instead of simply doing a parametric

fitting exercise, we used actual experimental rate constants to
develop the model, which consists of 11 differential equations
that permit us to simulate the kinetics of E2 and 8 metabolites
in the multienzyme pathway. The model simulations were
validated against experimental results obtained previously by
incubating E2 with the combined enzymes CYP1A1, CYP1B1,
COMT, and GSTP1 (31) and showed excellent concordance of
simulated and measured results. Of the nine analytes, only
2-MeOE2 and 2-OH-3-MeOE2 showed a noticeable deviation of
the simulated from the measured results, most likely due to
their more complex kinetics resulting from the simultaneous
involvement of three enzymes, COMT, CYP1A1, and CYP1B1.
It is noteworthy that the deviation of the two methoxyestro-
gens did not affect the simulation of more distal metabolites,
such as the GSH-estrogen conjugates, which showed excellent
agreement (Fig. 2A).

Catechol estrogens and estrogen quinones occupy pivotal
positions in the oxidative estrogen metabolism pathway
(Fig. 1). Using GC/MS, we could follow the production and
disappearance of the catechol estrogens (Fig. 2A). Ideally,
measurements of the estrogen quinones should be made, but
they are highly reactive with short half-lives (seconds to
minutes) due to the strained 1,2-diketone functionality
inherent in o-quinones (45). Although estrogen quinones are

Figure 2. A. Comparison of mathematical model with experimental data. The metabolism of E2, 2-OHE2, 4-OHE2, 2-MeOE2, 2-OH-3-MeOE2,
4-MeOE2, 2-OHE2-1-SG, 2-OHE2-4-SG, and 4-OHE2-2-SG is shown as a function of time. Concentration is expressed in Amol/L. Blue dots,
experimental data (31); red curves, derived from the mathematical model. B. Simulated kinetics of estrogen quinones E2-2,3-Q and E2-3,4-Q.

1624 Breast Cancer Risk Model

Cancer Epidemiol Biomarkers Prev 2006;15(9). September 2006



too labile to be reliably quantified in a multienzyme system,
the model allowed us to simulate their production and
disappearance during the 30-minute reaction (Fig. 2B). The
disappearance of the quinones is due to two factors, the
conversion of the quinones into stable GSH-estrogen conju-
gates and the irreversible loss from the system, most likely due
to binding of the reactive quinones to protein (46). The more
rapid disappearance of E2-2,3-Q compared with E2-3,4-Q is
consistent with the shorter half-life of 42 seconds for E1-2,3-Q
compared with 12 minutes for E1-3,4-Q (47). Overall, the model
captures the joint action of the phase I and II enzymes rather
well, allowing the simulation of the pathway from the parent
hormone E2 through several enzymatic steps to the most distal
metabolites, the GSH-estrogen conjugates. Because these
conjugates are produced via the quinones, the excellent
agreement between simulated and measured GSH-estrogen
conjugate levels provides further assurance about the validity
of modeling the estrogen quinones.

Although other phase I enzymes, such as CYP1A2 and
CYP3A4, are involved in hepatic and extrahepatic estrogen
oxidation, CYP1A1 and CYP1B1 display the highest levels of
expression in breast tissue and therefore are considered the
principal oxidizing enzymes in mammary estrogen metabolism
(48, 49). COMT shows ubiquitous expression in all tissues,
including breast (50). Although COMT is the sole methylating
enzyme, there are potentially three GSH-conjugating enzymes
active in the pathway. Based on protein levels in breast tissue,
GSTP1 is the predominant member of the GST family with

GSTM1 and GSTA1 present at much lower levels (51-53). GSTs
are known to have selective as well as overlapping substrate
specificities and it is presently not known whether GSTM1 and
GSTA1 share with GSTP1 the ability to conjugate estrogen
quinones (26). To determine the potential roles of GSTM1 and
GSTA1 in estrogen metabolism, we plan to prepare each as
purified, recombinant enzyme followed by kinetic studies to
define their respective rate constants. Besides COMT, there are
two other classes of phase II enzymes capable of conjugating
catechol estrogens (i.e., the sulfotransferases and UDP-glucur-
onosyltransferases). It seems that the catechol estrogens are
converted predominantly to methyl conjugates and to a lesser
extent to sulfate and glucuronide conjugates (54). In future
experiments, we will assess the role of sulfotransferases and
UDP-glucuronosyltransferases. The present mathematical mod-
el only incorporates the key phase I enzymes CYP1A1 and
CYP1B1 and the phase II enzymes COMT and GSTP1. However,
the model can readily accommodate additional enzymes and
allow inclusion of other GST members as well as sulfotrans-
ferases and UDP-glucuronosyltransferases in the same manner
as we currently do for CYP1A1 and CYP1B1. In contrast to the
complex kinetics of the methoxyestrogens, the sulfate and
glucuronide conjugation reactions follow simple substrate-
product kinetics like the GSTP1-mediated GSH conjugation.
Therefore, we anticipate straightforward modeling with good
agreement of simulated and experimental data.

Each of the phase I and II enzymes involved in estrogen
metabolism possesses genetic variants that (a) are associated

Table 1. Kinetic variables for WT and variant CYP1A1, CYP1B1, and COMT

Reaction Enzyme Allele kcat or Vmax Km

E2 ! 2-OHE2 CYP1A1 461Thr-462Ile (WT) 1.50 17
461Asn-462Ile 1.10 23
461Thr-462Val 3.60 18
461Asn-462Val 1.70 23

E2 ! 2-OHE2 CYP1B1 48Arg-119Ala-432Val-453Asn (WT) 0.36 24
48Gly-119Ala-432Val-453Asn 0.17 12
48Arg-119Ser-432Val-453Asn 0.29 19
48Arg-119Ala-432Leu-453Asn 0.35 17
48Arg-119Ala-432Val-453Ser 0.91 49
48Gly-119Ser-432Leu-453Ser 0.50 33
48Arg-119Ala-432Leu-453Ser 0.56 30
48Gly-119Ser-432Leu-453Asn 0.28 17
48Gly-119Ser-432Val-453Asn 0.19 13
48Gly-119Ser-432Val-453Ser 0.64 34
48Arg-119Ser-432Leu-453Asn 0.56 33
48Arg-119Ser-432Leu-453Ser 0.47 24
48Gly-119Ala-432Leu-453Ser 0.47 31
48Gly-119Ala-432Leu-453Asn 0.19 9.1
48Arg-119Ser-432Val-453Ser 0.65 36
48Gly-119Ala-432Val-453Ser 0.23 75

E2 ! 4-OHE2 CYP1B1 48Arg-119Ala-432Val-453Asn (WT) 2.10 14
48Gly-119Ala-432Val-453Asn 0.80 6.6
48Arg-119Ser-432Val-453Asn 1.70 9.3
48Arg-119Ala-432Leu-453Asn 1.40 9.6
48Arg-119Ala-432Val-453Ser 3.10 21
48Gly-119Ser-432Leu-453Ser 1.70 15
48Arg-119Ala-432Leu-453Ser 2.20 13
48Gly-119Ser-432Leu-453Asn 0.71 5.8
48Gly-119Ser-432Val-453Asn 1.10 5.5
48Gly-119Ser-432Val-453Ser 2.20 15
48Arg-119Ser-432Leu-453Asn 1.90 15
48Arg-119Ser-432Leu-453Ser 1.90 13
48Gly-119Ala-432Leu-453Ser 1.80 12
48Gly-119Ala-432Leu-453Asn 0.73 7.2
48Arg-119Ser-432Val-453Ser 2.70 17
48Gly-119Ala-432Val-453Ser 0.81 28

2-OHE2 ! 2-MeOE2 COMT 108Val (WT) 6.80 117
108Met 2.72 99

2-OHE2 ! 2-OH-3-MeOE2 COMT 108Val (WT) 1.50 51
108Met 0.62 58

4-OHE2 ! 4-MeOE2 COMT 108Val (WT) 3.40 24
108Met 1.94 28
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with altered enzyme function and (b) occur in a sizeable
portion of the population (55, 56). Because our experimental
analysis used only WT recombinant enzymes, the results
provide a limited view of estrogen metabolism. To obtain a
more realistic and inclusive view of estrogen metabolism in the
female population, we used the mathematical model to
simulate how variations in the kinetic variables resulting from
polymorphisms of the enzymes affect the metabolite concen-
trations. We examined 4 CYP1A1, 16 CYP1B1, and 2 COMT
alleles. GSTP1 also has two polymorphisms (i.e., 104Ile ! Val
and 113Ala! Val; refs. 28, 57), but it is unknown whether they
affect GSH-estrogen conjugation. Thus, our simulations are
based on the examination of 4 
 16 
 2 genetic combinations to
show the utility of the model. Although each of the metabolites
can be modeled, we concentrated our analysis on the catechols
and quinones because of their documented carcinogenic activity
(5-7, 16). As shown in Fig. 3, modeling of the 128 haplotype
combinations produced a continuous spectrum of catechol and
quinone concentrations over time, as expressed by a range of
AUCs. The simulations identified the haplotype combinations
producing the highest and lowest AUCs. For example, the
maximum AUCs for 4-OHE2 and E2-3,4-Q were produced by
the haplotype CYP1A1461Asn-462IleCYP1B148Arg-119Ser-432Val-453Asn-

COMT
108Met

, which were 2.6- and 4.6-fold higher, respectively,
than the minimumAUCs produced by haplotype CYP1A1461Thr-
462ValCYP1B148Gly-119Ala-432Val-453SerCOMT108Val. Although these
differences may not appear large, it is important to consider that
they affect on lifetime exposure, which is consistent with the
hormonal risk model presented by Pike et al. (58).

Our kinetic-genomic model is pertinent to the numerous
epidemiologic studies that have examined the association of
genetic variants of enzymes involved in estrogen metabolism
with breast cancer risk (56, 59). These studies have been
handicapped by investigating only one or two enzymes, but
even those examining all enzymes have been fundamentally
limited by not being able to assess the underlying metabolic
interactions (60). Our model attempts to fill this gap and we
applied it to a hospital-based case-control population that has
been analyzed previously with respect to CYP1A1, CYP1B1,
and COMT genotypes (34–36). Here, we went beyond
genotypes and used the model to determine for each woman
the effect of her composite CYP1A1, CYP1B1, and COMT
haplotypes on estrogen metabolite production. Inherited

variations in enzyme genotype persist throughout life and
can therefore be regarded as constants for each individual.
However, the very same genes are also subject to induction
and levels of enzyme expression may vary considerably as a
result of the high degree of inducibility by a variety of agents.
For example, CYP enzymes are induced by hundreds of
compounds (dietary and environmental chemicals and drugs)
and human exposure to such xenobiotics is unavoidable (61).
Intraindividual and interindividual variation in xenobiotic
exposure has several consequences: (a) the P450 activity in an
individual may change over time, (b) the P450 activity may
differ between individuals of the same genotype, and (c) the
phenotypic variability in P450 activity may be greater than the
effect of genetic polymorphisms due to the strong inducing
power of certain xenobiotics. Thus, although each individual
has a unique composite E2-3,4-Q AUC based on her subset of
128 genetic combinations, the AUC value can vary with the
phenotype. In the model, we attempted to incorporate both
the certainty of the enzyme genotype and the ambiguity of the
phenotype, the latter indicated by the changing ratio of phase I
enzymes CYP1B1/CYP1A1 (Fig. 4). Although we have to
accept imprecise information about P450 activity in breast
tissue, we can assume that the concentration of CYP1B1 is
greater than that of CYP1A1 based on mRNA expression
levels, higher levels of 4-OHE2 than 2-OHE2, and the
observation that 2-OHE2 is produced by both CYP isoforms,
whereas 4-OHE2 is formed only by CYP1B1 (14, 15, 48, 49).
Because the 4-OHE2/2-OHE2 ratio can be f3 and reach as
high as f5 (42-44), we varied the CYP1B1/CYP1A1 ratio in
the model from 2 to 5. For CYP ratios >2, the model identified a
top tier of E2-3,4-Q AUCs with significantly increased numbers
of breast cancer cases in the top percentiles (Fig. 4B and C;
Table 3), suggesting that E2-3,4-Q AUC may be an indicator of
breast cancer risk. The ranking order of E2-3,4-Q AUCs is
primarily determined by the enzyme genotype (i.e., the
composite CYP1A1-CYP1B1-COMT haplotype of a subject).
However, the AUC ranking is also affected by the enzyme
phenotype and a change in CYP1B1/CYP1A1 ratio may lead
to a different ranking of a subject in the population (Fig. 4B
and C). This is due to the fact that CYP1B1 and CYP1A1
catalyze different reactions in the metabolic pathway. Chang-
ing their ratio will have different results on the E2-3,4-Q AUC
for subjects with different composite haplotypes. Estrogens

Figure 3. Kinetic-genomic modeling
of catechol estrogens, 2-OHE2 (A) 4-
OHE2 (B), and estrogen quinones,
E2-2,3-Q (C) and E2-3,4-Q (D),
using rate constants for WT and
variant CYP1A1, CYP1B1, and
COMT. Only the highest, lowest,
and WT (dotted line) AUCs are
shown.

1626 Breast Cancer Risk Model

Cancer Epidemiol Biomarkers Prev 2006;15(9). September 2006



have long been recognized as prime risk factor for the
development of breast cancer, but their assessment has not
progressed beyond traditional exposure data, such as parity,
age at menarche and menopause, etc. Here, we present a novel
approach that is based on the molecular analysis of mammary
estrogen metabolism. The E2-3,4-Q AUC is a plausible
metabolic risk factor for breast cancer because E2-3,4-Q has
been identified as principal estrogen metabolite causing DNA
adduct formation in experimental animals and E2-3,4-Q-
derived DNA adducts have been detected in human breast
cancer tissues (8-10, 13, 41, 44, 62). Whether the E2-3,4-Q AUC
is an independent risk factor, as suggested by the present
analysis, will need to be confirmed by a larger separate study.
The value of E2-3,4-Q AUC as a new metabolic-genetic
risk factor may yet be in its combination with traditional
measures of endogenous and exogenous estrogen exposure.

Table 2. CYP1A1, CYP1B1, and COMT allele and haplotype
frequencies of age-matched study population

Cases Controls P

No. 221 217
Age (y)
Mean 57.4 57.3 0.99
Median 56 57

Allele frequency
CYP1A1
Codon 461
Thr 0.955 0.956
Asn 0.045 0.044 0.916
HWE 1.000 1.000

Codon 462
Ile 0.950 0.963
Val 0.050 0.037 0.348
HWE 0.011 0.245

CYP1B1
Codon 48
Arg 0.661 0.684
Gly 0.339 0.316 0.455
HWE 1.000 0.871

Codon 119
Ala 0.649 0.682
Ser 0.351 0.318 0.305
HWE 0.463 0.633

Codon 432
Val 0.423 0.433
Leu 0.577 0.567 0.763
HWE 0.205 0.078

Codon 453
Asn 0.824 0.823
Ser 0.176 0.177 0.971
HWE 0.362 0.657

COMT
Codon 108
Val 0.516 0.505
Met 0.484 0.495 0.740
HWE 0.358 0.889

Haplotype frequency
CYP1A1
461Thr-462Ile 0.905 0.919
461Thr-462Val 0.045 0.037 0.411
461Asn-462Ile 0.050 0.044

CYP1B1
48Arg-119Ala-432Val-453Asn 0.379 0.380
48Gly-119Ser-432Leu-453Asn 0.302 0.261 0.630
48Arg-119Ala-432Leu-453Ser 0.164 0.151
48Arg-119Ala-432Leu-453Asn 0.104 0.139
48Gly-119Ser-432Val-453Asn 0.029 0.040
48Gly-119Ser-432Leu-453Ser 0.004 0.011
48Arg-119Ala-432Val-453Ser 0.003 0.011
48Arg-119Ser-432Leu-453Ser 0.001 0.005
48Arg-119Ser-432Val-453Asn 0.007 NO
48Gly-119Ser-432Val-453Ser 0.004 NO
48Arg-119Ser-432Leu-453Asn 0.003 NO
48Gly-119Ala-432Val-453Asn NO 0.002

Abbreviation: NO, not observed.

Figure 4. Correlation of E2-3,4-Q AUC with CYP1B1/CYP1A1 ratio
for cases and controls. A. Box and whisker graph of E2-3,4-Q AUCs
for entire population of 221 cases (red) and 217 controls (blue). Box,
includes 84% of the respective group; whiskers, the top and bottom
8 percentiles. As indicated by the medians (center line in each box),
the AUCs for cases and controls increase with increasing CYP ratio.
However, there are no significant differences between case and
control medians at any CYP ratio tested (see Ps). B. Column scatter
graph of E2-3,4-Q AUCs for top 8 percentile (35 subjects) of entire
study population. Dot, an individual case (red) or control (blue).
Subjects with the same composite CYP1A1-CYP1B1-COMT enzyme
haplotype have the same E2-3,4-Q AUC. As the CYP ratio increases,
their E2-3,4-Q AUC changes in the same manner. However, subjects
with different composite enzyme haplotypes may yield different E2-
3,4-Q AUC values, resulting in a change in their ranking with
increasing CYP ratio. C. Column scatter graph of E2-3,4-Q AUCs for
top 2 percentile (10 subjects) of entire study population. There are
significantly more cases (red) than controls (blue). P = 0.01 at
CYP1B1/CYP1A1 = 5.

Cancer Epidemiology, Biomarkers & Prevention 1627

Cancer Epidemiol Biomarkers Prev 2006;15(9). September 2006



For example, one could estimate the overall exposure of a
woman to E2-3,4-Q AUC by taking into account (a) total years
of menstruation or menopause age, (b) total pregnancy time,
(c) years of menstruation before first full-term pregnancy, (d)
body mass index, (e) dosage and duration of oral contra-
ceptives, and (f) dosage and duration of hormone replacement
therapy. Altogether, one could derive an individualized risk
factor of estrogen exposure for each woman that combines her
reproductive life history with her unique genetic and
metabolic traits. Data on traditional variables related to
estrogen exposure were unfortunately not obtained for all
subjects of the present study population, such as the control
subject who had the highest E2-3,4-Q AUC in the entire
population (Table 3).

In summary, using experimentally determined rate constants,
we developed a mathematical model of mammary estrogen
metabolism that allowed the kinetic simulation of E2 and eight
metabolites. The simulations showed excellent agreement with
experimental results and provided a quantitative assessment
of the metabolic interactions. The model permits the simulation
of the carcinogenic estrogen quinones, whose transient nature
prevents their direct quantitation. Using rate constants of
genetic variants of CYP1A1, CYP1B1, and COMT, the model
allows examination of the kinetic effect of enzyme polymor-
phisms on the entire pathway, including the identification of
those haplotypes producing the largest amounts of catechols
and quinones. We conceptually addressed the ambiguity of
phenotypic information about enzyme concentration by varying
the CYP1B1/CYP1A1 ratio. Application of the model to a breast
cancer case-control population defined E2-3,4-Q AUC as a
potential risk factor. The model identified a subset of women
with an increased risk of breast cancer based on their enzyme
haplotype and consequent E2-3,4-Q production. The model
offers for the first time the opportunity to combine genetic,
metabolic, and lifetime exposure data in assessing estrogens as
breast cancer risk factor.
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